Transitioning from MODIS to VIIRS for remote sensing of ocean, land, and atmosphere

RT in Earth Atmosphere Multispectral Signatures MODIS Heritage Products VIIRS Instrument Description Some Anticipated VIIRS Applications (SST, Ocean Color, Vegetation, Snow, Ice, Clouds, Moisture, Fires, Dust, Low Light Imagery)

W. Paul Menzel, University of Wisconsin- Madison

Thanks to Jeff Puschell, Steve Miller, Jeff Key, Liam Gumley, Tom Rink, Geoff Cureton, the MODIS Science Team, and colleagues at CIMSS

Suomi National Polar-orbiting Partnership (NPP)

NPP was re-named Suomi NPP on 24 Jan 2012

http://npp.gsfc.nasa.gov/

Electromagnetic spectrum

Satellite remote sensing of the Earth-atmosphere

Observations depend on

telescope characteristics (resolving power, diffraction) detector characteristics (field of view, signal to noise) communications bandwidth (bit depth) spectral intervals (window, absorption band) time of day (daylight visible) atmospheric state (T, Q, clouds) earth surface (Ts, vegetation cover)

All Sats on NASA J-track

http://science.nasa.gov/realtime/jtrack/3d/JTrack3D.html/

Solar reflected (visible) and Earth emitted (infrared) energy

Over the annual cycle, the incoming solar energy that makes it to the earth surface (about 50 %) is balanced by the outgoing thermal infrared energy emitted through the atmosphere.

The atmosphere transmits, absorbs (by H2O, O2, O3, dust) reflects (by clouds), and scatters (by aerosols) incoming visible; the earth surface absorbs and reflects the transmitted visible. Atmospheric H2O, CO2, and O3 selectively transmit or absorb the outgoing infrared radiation. The outgoing microwave is primarily affected by H2O and O2.

Visible / Near Infrared Remote Sensing

VIIRS, MODIS, FY-1C, AVHRR Visible Near-infrared Spectral Bands

In an ideal situation with no atmosphere all of the incoming radiation would reach the surface. A portion of the photons would be absorbed at the surface. The remaining photons reflect back up into space.

Diagrams from E. Vermote et. al, 6S manual

1) Backscattered photons which never reach the surface.

2) Scattered photons which illuminate the ground.

Signal or Noise?

3) Photons reflected by the surface and then scattered by the atmosphere.

Diagrams from E. Vermote et. al, 6S manual

4) Multiple scattering events.

This is usually ignored after one or two interactions.

Diagram from E. Vermote et. al, 6S manual

The real atmosphere complicates the signal. Only a fraction of the photons reach the sensor so that the target seems less reflecting.

From E. Vermote et. al, 6S manual

Infrared Remote Sensing

VIIRS MODIS Infrared Spectral Bands

Using wavenumbers

$$c_2 v/T$$

B(v,T) = $c_1 v^3 / [e -1]$
(mW/m²/ster/cm⁻¹)

 $v(\max \text{ in cm-1}) = 1.95T$

 $B(v_{max},T) \sim T^{**3}$.

1.0-

$$E = \pi \int B(v,T) dv = \sigma T^{4},$$

$$O = \frac{c_{1}v^{3}}{C_{2}v/[\ln(-+1)]}$$

$$B_{v}$$

Using wavelengths

 $c_2 / \lambda T$ B(\lambda,T) = c_1 / { \lambda 5 [e -1] } (mW/m²/ster/\u03c4mm)

 λ (max in cm)T = 0.2897

B(λ_{max} ,T) ~ T**5.

23

Radiative Transfer Equation

The radiance leaving the earth-atmosphere system sensed by a satellite borne radiometer is the sum of radiation emissions from the earth-surface and each atmospheric level that are transmitted to the top of the atmosphere. Considering the earth's surface to be a blackbody emitter (emissivity equal to unity), the upwelling radiance intensity, I_{λ} , for a cloudless atmosphere is given by the expression

$$I_{\lambda} = \varepsilon_{\lambda}^{sfc} B_{\lambda}(T_{sfc}) \tau_{\lambda}(sfc - top) + \sum_{\substack{\lambda \in \lambda}} \varepsilon_{\lambda}^{layer} B_{\lambda}(T_{layer}) \tau_{\lambda}(layer - top)$$
layers

where the first term is the surface contribution and the second term is the atmospheric contribution to the radiance to space. Satellite observation comes from the sfc and the layers in the atm

Rsfc R1 R2 R3 $\tau 4 = 1$ $\tau 3 = \text{transmittance of upper layer of atm}$ $\tau 2 = \text{transmittance of middle layer of atm}$ $\tau 1 = \text{transmittance of lower layer of atm}$

esfc for earth surface

recalling that $\mathcal{E}i = 1 - \tau i$ for each layer, then

Robs = ε sfc Bsfc $\tau 1 \tau 2 \tau 3 + (1 - \tau 1) B1 \tau 2 \tau 3 + (1 - \tau 2) B2 \tau 3 + (1 - \tau 3) B3$

Radiative Transfer through the Atmosphere

26

The emissivity of an infinitesimal layer of the atmosphere at pressure p is equal to the absorptance (one minus the transmittance of the layer). Consequently,

 $\varepsilon_{\lambda}(\text{layer}) \tau_{\lambda}(\text{layer to top}) = [1 - \tau_{\lambda}(\text{layer})] \tau_{\lambda}(\text{layer to top})$

Since transmittance is multiplicative

 $\tau_{\lambda}(\text{layer to top}) - \tau_{\lambda}(\text{layer}) \tau_{\lambda}(\text{layer to top}) = -\Delta \tau_{\lambda}(\text{layer to top})$

So we can write

$$\begin{split} I_{\lambda} &= \epsilon_{\lambda}{}^{sfc} B_{\lambda}(T(p_{s})) \tau_{\lambda}(p_{s}) - \Sigma B_{\lambda}(T(p)) \Delta \tau_{\lambda}(p) \ . \end{split} \\ p \\ \text{which when written in integral form reads} \\ I_{\lambda} &= \epsilon_{\lambda}{}^{sfc} B_{\lambda}(T(p_{s})) \tau_{\lambda}(p_{s}) - \int^{p_{s}} B_{\lambda}(T(p)) \left[d\tau_{\lambda}(p) / dp \right] dp \ . \end{split}$$

0

27

Wavenumber (cm⁻¹)

As σ_c increases (decreases) then ΔR becomes more negative (positive)

MW Remote Sensing

Microwave Spectral Features

 $Tb = \varepsilon Ts \tau m + \varepsilon m Tm + \varepsilon m rs \tau m Tm$

 $Tb = \varepsilon s Ts (1-\sigma m) + \sigma m Tm + \sigma m (1-\varepsilon s) (1-\sigma m) Tm$

So temperature difference of low moist over ocean from clear sky over ocean is given by

 $\Delta T_b = -\varepsilon_s \sigma_m T_s + \sigma_m T_m + \sigma_m (1-\varepsilon_s) (1-\sigma_m) T_m$

For $\varepsilon_s \sim 0.5$ and $T_s \sim T_m$ this is always positive for $0 < \sigma_m < 1$

៩០ំម

бÓЕ

120E

32

23.8

31.4

Transitioning from MODIS to VIIRS for remote sensing of ocean, land, and atmosphere

RT in Earth Atmosphere Multispectral Signatures MODIS Heritage Products VIIRS Instrument Description Some Anticipated VIIRS Applications (SST, Ocean Color, Vegetation, Snow, Ice, Clouds, Moisture, Fires, Dust, Low Light Imagery)

W. Paul Menzel, University of Wisconsin- Madison

MODIS Studies Major Climate System Elements

ocean, land, atmosphere

Carbon Cycle

Atmospheric Chemistry

Water & Energy Cycle

Coupled Chaotic Nonlinear Atmosphere and Ocean Dynamics

35

OCEAN-SOLAR RADIATION

EOS

EOS

Developing Tools to Monitor Runoff Events in the Bay

March 6, 2008 March 9, 2008 March 10, 2008 March 11, 2008 March 12, 2008 March 13, 2008 March 14, 2008 March 15, 2008

The satellite ocean color products developed by the COCE Team can be utilized to monitor sediment sources and quantify sediments loads into the Chesapeake Bay. Above: The evolution of high sediment loads in the Northern Chesapeake Bay is demonstrated during a record rain event in the Chesapeake Bay Watershed during March 2008.

The warm heart of the Gulf Stream is readily apparent in the top SST image. As the current flows toward the northeast it begins to meander and pinch off eddies that transport warm water northward and cold water southward. The current also divides the local ocean into a low-biomass region to the south and a higher-biomass region to the north.

The data were collected by MODIS aboard Aqua on April 18, 2005.

NOAA's El Niño Page

Sea surface temperature in the equatorial Pacific Ocean (above). El Niño is characterized by unusually warm temperatures and La Niña by unusually cool temperatures in the equatorial Pacific. Anomalies (below) represent deviations from normal temperature values, with unusually warm temperatures shown in red and unusually cold anomalies shown in blue.

NOAA/NESDIS SST Anomaly (degrees C), 10/24/2011

MODIS SST

LAND-SOLAR RADIATION

EOS

LAND - THERMAL RADIATION

Investigating with Multi-spectral Combinations

Given the spectral response of a surface or atmospheric feature

Select a part of the spectrum where the reflectance or absorption changes with wavelength

e.g. reflection from grass

If 0.65 μm and 0.85 μm channels see the same reflectance than surface viewed is not grass; if 0.85 μm sees considerably higher reflectance than 0.65 μm then surface might be grass

Seasonal Biosphere

Ocean Chlorophyll-a & Terrestrial NDVI

Global Fires

ATMOSPHERE-SOLAR RADIATION

EOS

ATMOSPHERE - THERMAL RADIATION

EOS

Global TPW from Seemann 1 MAY 2002

ATMOSPHERE - CLEAR SKY THERMAL EMISSION

EOS≣

02 11/92

Snow/Cloud Discrimination

Quadri-spectral

0.6 (VIS) 1.38 (CIR) 1.6 (SIR) 11.0 (TIR)

Snow/Cloud Example with MODIS

low refl at 1.6 um from snow in mountains

Snow/Cloud Example with MODIS

10 WAVELENGTH (jim)

15µm

Low temp from clouds and ice at 11 um

Snow/Cloud Example with MODIS

high refl at 1.38 um from high ice clouds

MODIS identifies cloud classes

Hi cld Mid cld Lo cld Snow

Clouds separate into classes when multispectral radiance information is viewed

Cloud Properties

True Color Image Cloud Mask Land Classification Cloud Opt Thickness Cloud Eff Radius Cloud Top Temp Bispectral Pitase

October 1, 2001

Monthly Mean Cloud Fraction (Cloud Mask)

(S. A. Ackerman, R. A. Frey et al. – Univ. Wisconsin)

April 2005 Aqua C5

Cloud_Fraction_Day _Mean_Mean

Cloud_Fraction_Night _Mean_Mean

Monthly Mean Cloud Optical Thickness

(M. D. King, S. Platnick et al. – NASA GSFC)

April 2005 Aqua C5 (QA mean)

Cloud_Optical_Thickness _Liquid_QA_Mean_Mean

Cloud_Optical_Thickness _Ice_QA_Mean_Mean

Monthly Mean Cloud Effective Radius

(M. D. King, S. Platnick et al. – NASA GSFC)

April 2005 Aqua C5 (QA mean)

Cloud_Effective_Radius _Liquid_QA_Mean_Mean

Cloud_Effective_Radius _Ice_QA_Mean_Mean

Monthly Mean Cloud-Top Properties (W. P. Menzel, R. A. Frey et al. – Univ. Wisconsin)

April 2005 Aqua C5

Cloud_Top_Pressure _Mean_Mean

Cloud_Top_Temperature _Mean_Mean

Eyjafjallajökull Eruptions

March 20 to April 12, 2010 non-ash eruptions, lava fountains

April 14 to May 23, 2010 - mostly explosive ash cloud producing (ash was visible in satellite imagery 32 out of 41 days)

Marco Fulle - www.stromboli.net

Source: Jørgen Brandt, Senior Scientist, National Environmental Research Institute at Aarhus University, Denmark

Investigating with Multi-spectral Combinations

Given the spectral response of a surface or atmospheric feature

Select a part of the spectrum where the reflectance or absorption changes with wavelength

e.g. transmission through ash

If 11 μm sees the same or higher BT than 12 μm the atmosphere viewed does not contain volcanic ash; if 12 μm sees considerably higher BT than 11 μm then the atmosphere probably contains volcanic ash

Frank Honey, CSIRO 1980s

Terra-Aqua MODIS provide am & pm snapshots

SEVIRI provides time continuous monitoring of ash location and amount

Above: MODIS winds, 26 Oct 2011

Right: MODIS cloud top pressure, 26 Oct 2011

Polar winds and CTPs Sodankylä DB Examples

Ice Motion

From MODIS (ideally this would be a blended microwave/vis-IR product)

(Investigator: Yinghui Liu)

Low-Level Atmospheric Temperature Inversions (MODIS)

Strength (C)

Depth (m)

Unfortunately, this won't be available from VIIRS because it uses a low-peaking water vapor (or CO2) channel.
Transitioning from MODIS to VIIRS for remote sensing of ocean, land, and atmosphere

RT in Earth Atmosphere Multispectral Signatures MODIS Heritage Products VIIRS Instrument Description Some Anticipated VIIRS Applications (SST, Ocean Color, Vegetation, Snow, Ice, Clouds, Moisture, Fires, Dust, Low Light Imagery)

W. Paul Menzel, University of Wisconsin- Madison

NPP is launched successfully 28 Oct 2011

Visible Infrared Imaging Radiometer Suite Raytheon SAS El Segundo, Ca

Description

- <u>Purpose</u>: Global observations of land, ocean, & atmosphere parameters at high temporal resolution (~ daily)
- Predecessor Instruments: AVHRR, OLS, MODIS, SeaWiFS
- <u>Approach</u>: Multi-spectral scanning radiometer (22 bands between 0.4 μm and 12 μm) 12-bit quantization
- Swath width: 3000 km

Spatial Resolution

- 16 bands at 750m
- 5 bands at 325m
- DNB

VIIRS on NPP

Single Sensor VIIRS Improves Data Quality Reduces Integration Costs

Physical Characteristics (Volume, Dimensions, Mass, Power)

Four FPAs Cover Full Spectral Range

Vis/NIR Response Anomaly

(1) The smoking gun for causation of the VisNIR response anomaly has been found. Aerospace laboratory analysis of a witness sample from the same run used to coat the silver mirrors in the RTA revealed tungsten and tungsten oxides in two places, in a thin layer at the top of the coating and in smaller "trace" quantities below the silver layer. In discussions with Quantum, formerly Denton, the coating vendor, it was learned that an ion source using a tungsten filament is routinely used in a cleaning step prior to deposition of the silver as part of their normal coating process. This explains the presence of tungsten below the silver but also suggested a potential root cause for the presence of tungsten in the top layer of the coating. After reviewing their documentation of the NPP VIIRS mirror coating runs, Quantum reported that the ion source was used a second time as a final step in coating the NPP VIIRS RTA mirrors. After following the normal process it was found that reflectance did not meet specification, so Quantum used the ion source a second time to further oxidize silicon in the upper layers. This final step, which was not and is not part of Quantum's normal coating process, brought the mirrors within the reflectance specification but also introduced tungsten into the top layer of the coating. The tungsten oxides in the top layer are known to act as UV activated color centers, essentially darkening the RTA mirrors as they are exposed to UV on orbit.

To summarize, the degradation to date is about 15% in M7 and I2 (0.865 um) gain. It is within possibility that by the time we reach 0 degradation rate on these bands, we may indeed have a 30-50% total degradation, but that's a large extrapolation at this point.

SDSM Degradation

(2) Eric Johnson of Raytheon provided evidence that the root cause of the degradation of the SDSM detector response is radiation induced displacement damage within the SDSM detectors. We know from on-orbit data analysis that both MODIS and VIIRS SDSM detectors are degrading similarly with respect to spectral signature, with the greatest degradation in the longer wavelength bands. We also know that the SDSM detector response degradation is NOT UV driven, which strongly suggests that the cause of this degradation is unrelated to the response degradation in VIIRS itself. Note that the SDSM is a separate instrument used to observe the sun and VIIRS solar diffuser, and therefore has its own optics, detectors and electronics. Raytheon has data from neutron exposure testing of detectors of the type used in the SDSM, and these data show degradation with the same spectral signature observed on orbit for both MODIS and VIIRS. It is also known that both neutrons and protons cause the same type of displacement damage in detectors. The natural space environment includes high energy protons and both VIIRS and MODIS are exposed to protons, albeit at different levels due to their different orbits and different amounts of shielding inherent in the designs. Based on these facts and the sum total of the evidence presented by Eric Johnson, I believe there is a very strong case to be made for radiation induced displacement damage as root cause for the SDSM detector degradation. As to performance impacts, there is enormous SNR margin in the SDSM for both VIIRS and MODIS, so as long as VIIRS SDSM detector degradation trends continue as expected, there should be no impact on the capability to monitor solar diffuser degradation as planned throughout mission life. We will continue to trend both the SDSM detector response degradation as well as VIIRS response, needless to say, so we will become aware of any departures from the current trends that might change this assessment.

VIIRS System Provides Environmental Data Records (EDRs)

- VIIRS System Design based on integrated Sensor and Algorithms
- Engineering Development Unit (EDU) approaching integration
- EDR Science Algorithms developed, documented, and publicly released by Raytheon Technical Services Company (RTSC) Information Technology and Scientific Services (ITSS)

VIIRS VIS/NIR & IR Bands

		Band Wave- No. length (μm)		Horiz Sam (km Downtrack Nadir	ple Interval x X Crosstrack) End of Scan	Driving EDRs	Radi- ance Range	Ltypor Ttyp
		M 1	0.412	0.742 x 0.259	1.60 x 1.58	Ocean Color Aerosols	Low High	44.9 155
		M 2 0.445 0.742 x 0.259		1.60 x 1.58	Ocean Color Aerosols	Low High	4 0 1 4 6	
٩c	odes	М 3	0.488	0.742 x 0.259	1.60 x 1.58	Ocean Color Aerosols	Low High	32 123
AIR FF	IN D	M 4 0.555 0.742 x 0.259		1.60 x 1.58	Ocean Color Aerosols	Low High	2 1 9 0	
ŝ	u l	1	0.640	0.371 x 0.387	0.80 x 0.789	lm agery	Single	2 2
>	Silico	M 5 0.672		0.742 x 0.259	1.60 x 1.58	Ocean Color Aerosols	Low High	10 68
		M 6 0.746 0.742 x 0.776		1.60 x 1.58	Atm ospheric Corr'n	S in g le	9.6	
		12	0.865	0.371 x 0.387	0.80 x 0.789	NDVI	Single	2 5
		M 7	0.865	0.742 x 0.259	1.60 x 1.58	Ocean Color Aerosols	Low High	6.4 33.4
СО	D	DNB	0.7	0.742 x 0.742	0.742 x 0.742	Im agery	Var.	6.70E-05
		M 8	1.24	0.742 x 0.776	1.60 x 1.58	Cloud Particle Size	Sinale	5.4
	Ê	M 9	1.378	0.742 x 0.776	1.60 x 1.58	Cirrus/Cloud Cover	Single	6
	Ŷ	13	1.61	0.371 x 0.387	0.80 x 0.789	Binary Snow Map	Single	7.3
I.H	e (M 1 0	1.61	0.742 x 0.776	1.60 x 1.58	Snow Fraction	S in g le	7.3
ş	Εp	M 1 1	2.25	0.742 x 0.776	1.60 x 1.58	Clouds	Single	0.12
S/I	lgO	14	3.74	0.371 x 0.387	0.80 x 0.789	Im agery Clouds	Single	270 K
	T >	M 1 2	3.70	0.742 x 0.776	1.60 x 1.58	<u>SST</u>	Single	270 K
	ē.	M 1 3	4.05	0.742 x 0.259	1.60 x 1.58	S S T F ire s	Low High	300 K 380 K
		M 1 /	8 5 5	0742 × 0776	1 60 x 1 58	Cloud Top Properties	Single	270 K
£	CT	M 1 4	10 763	0 7 4 2 x 0 7 7 6	1 60 x 1 58	SST	Single	300 K
\geq	Η	15	11,450	0.371 x 0.387	0.80 x 0.789	Cloud Imagery	Single	210 K
	ē.	M 1 6	12.013	0.742 x 0.776	1.60 x 1.58	SST	Single	300 K

High resolution atmospheric absorption spectrum and comparative blackbody curves.

3008

280

2401

220K

200K

18.0

VIIRS' Optimized Bandset Provides Rich Data for All EDRs

nm / um

New Band Name	DNB	M1	M2	M3	M4	- 11	M5	M6	M7	12	M8	M9	M10	13	M11	M12	14	M13	M14	M15	15	M16
Old Band Name	DNB	Chlor2	2	Chlor8	4	5i	OC2	OC3	6	6i	Cloud1	7	8	8i	9	10	10i	SST2	SST4	11	12i	12
Band position	700	412	445	488	555	645	672	751	865	865	1.24	1.38	1.61	1.61	2.25	3.70	3.74	4.05	8.55	10.76	11.45	12.01
Band width	400	20	18	20	20	50	20	15	39	39	0.02	0.015	0.06	0.06	0.05	0.18	0.38	0.16	0.30	1.00	1.90	0.95
Imagery																						
Sea Surface Temp.																						
Soil Moisture																						
Cloud Base Height																						
Cloud Cover/Layers																						
Cloud Particle Size																						
Cloud Thickness																						
Cloud Top Height																						
Cloud Top Pressure																						
Cloud Top Temp.																						
Land Surface Temp.																						
Fire																						
Vegetation Index																						
Snow Cover(Binary)																						
Snow Cover(Fraction)																						
Vegetation / Type																						
Albedo																						
Fresh Water Ice																						
Ice Surface Temp.																						
Littoral Transport																						
Net Heat Flux																						
Ocean Color / Chloro.																						
Sea Ice age / motion																						
Mass (turbidity)																						
Ocean Currents																						
Aer Opt Thick (Ocean)																					
Aer Opt Thick (Land)																						
Aer Part Size (Ocean)	1																					
Aer Part Size (Land)																						
Suspended Matter																						
Total Prec. Water																						
Cloud mask																						

VIIRS Prelaunch Performance

(NPP F1 Bands and SNR/NEDT)

					Specification											
		Band No.	Driving EDR(s)	Spectral Range (um)	Horiz Sample (track Nadir	Interval (km) x Scan) End of Scan	Band Gain	Ltyp or Ttyp (Spec)	Lmax or Tmax	SNR or NEdT (K)	Measured SNR or NEdT (K)	SNR Margin (%)				
		M1	Ocean Color Aerosol	0.402 - 0.422	0.742 x 0.259	1.60 x 1.58	High Low	44.9 155	135 615	352 316	723 1327	105% 320%				
		M2	Ocean Color Aerosol	0.436 - 0.454	0.742 x 0.259	.742 x 0.259 1.60 x 1.58		40 146	127 687	380 409	576 1076	51.5% 163%				
		M3	Ocean Color Aerosol	0.478 - 0.498	0.742 x 0.259 1.60 x 1.58		High Low	32 123	107 702	416 414	658 1055	58.2% 155%				
S	NIR	M4	Ocean Color Aerosol	0.545 - 0.565	0.742 x 0.259	1.60 x 1.58	High Low	21 90	78 667	362 315	558 882	54.1% 180%				
pu	Vis	l1	Imagery EDR	0.600 - 0.680	0.371 x 0.387	0.80 x 0.789	Single	22	718	119	265	122.7%				
e Ba		M5	Ocean Color	0.662 - 0.682	0.742 x 0.259	1.60 x 1.58	High	10	59 651	242	360 847	49% 135%				
χiγ		M6	Atmosph Correct	0.739 - 0.754	0.742 x 0.776	1.60 x 1.58	Single	9.6	41	199	394	98.0%				
ilec		12	NDVI	0.846 - 0.885	0.371 x 0.387	.387 0.80 x 0.789	Single	25	349	150	299	99.3%				
Rei		 М7	Ocean Color 0.846 - 0.885 M7 Aerosol		0.742 x 0.259	1.60 x 1.58	High Low	6.4 33.4	29 349	215 340	545 899	154% 164%				
	F	M8	Cloud Particle Size	1.230 - 1.250	0.742 x 0.776	1.60 x 1.58	Single	5.4	165	74	349	371.6%				
		M9	Cirrius/Cloud Cover	1.371 - 1.386	0.742 x 0.776	1.60 x 1.58	Single	6	77.1	83	247	197.6%				
		13	Binary Snow Map	1.580 - 1.640	0.371 x 0.387	0.80 x 0.789	Single	7.3	72.5	6	165	2650.0%				
	Ч	M10	Snow Fraction	1.580 - 1.640	0.742 x 0.776	1.60 x 1.58	Single	7.3	71.2	342	695	103.2%				
	NN	M11	Clouds	2.225 - 2.275	0.742 x 0.776	1.60 x 1.58	Single	0.12	31.8	10	18	80.0%				
	S/	14	Imagery Clouds	3.550 - 3.930	0.371 x 0.387	0.80 x 0.789	Single	270	353	2.5	0.4	84.0%				
ds		M12	SST	3.660 - 3.840	0.742 x 0.776	1.60 x 1.58	Single	270	353	0.396	0.12	69.7%				
e Ban		M13	SST Fires	3.973 - 4.128	0.742 x 0.259	1.60 x 1.58	High Low	300 380	343 634	0.107 0.423	0.044 	59% 				
sive		M14	Cloud Top Properties	8.400 - 8.700	0.742 x 0.776	1.60 x 1.58	Single	270	336	0.091	0.054	40.7%				
nis	ш	M15	SST	10.263 - 11.263	0.742 x 0.776	1.60 x 1.58	Single	300	343	0.07	0.028	60.0%				
Emi	N	15	Cloud Imagery	10.500 - 12.400	0.371 x 0.387	0.80 x 0.789	Single	210	340	1.5	0.41	72.7%				
		M16	SST	11.538 - 12.488	0.742 x 0.776	1.60 x 1.58	Single	300	340	0.072	0.036	50.0%				

HSI uses 3 in-scan pixels aggregation at Nadir

Courtesy of H. Oudrari

Comparable	e MODIS and VIIRS Channe	ls	
MODIS (10	00 m)	VIIRS-N	M (760 m)
8,9	0.415, 0.443	1,2	ocean color
10, 12	0.490, 0.565	3,4	"
14-16	0.681, 0.75, 0.865	5-7	66
5**	1.24	8	cld particle size
26	1.38	9	thin cirrus
6**	1.61	10	snow
7**	2.13	11	cloud properties
20	3.75	12	sfc/cld temp
23	4.05	13	sfc temp
29	8.55	14	sfc/cld temp
31	11.0	15	sfc/cld temp
32	12.0	16	sfc/cld temp
		VIIRS-I	(380 m)
1*	0.645	1	imagery
2*	0.865	2	66 C
6**	1.64	3	66
20	3.75	4	66
31	11.0	5	66

* available at 250 m, ** available at 500 m resolution

SNR,	NEDL,	AND]	NEDT	Measur	ED AT	the I	RADIANCES	(AND	TEMPERATURES	GIVEN IN	TABLE II(a) AND
	(b) A	ND TH	e Frac	TION OF	FULL	-SCAL	e Radiance	e Ace	EVED AND THE	DYNAMIC	RANGE

Band	SNR	SNR	NEDL	NEDT	Lsat/Lmax*	Lsat/NEDL
			(W/m ² -sr-µm)	(K)		
	Measured	Required	Measured	Measured	Measured	Measured
1	168.1	128.0	0.1304		1.11	5837
2	413.5	201.0	0.0598		0.97	4638
3	315.7	243.0	0.1120	-	1.19	6285
4	302.2	228.0	0.0960	-	1.13	6122
5	77.6	74.0	0.0750	-	1.19	1747
6	324.1	275.0	0.0226	-	1.07	3312
7	72.0	110.0	0.0143	-	1.14	1753
8	932.8	880.0	0.0484	-	1.28	4627
9	1324.6	838.0	0.0317	-	1.15	4845
10	1307.9	802.0	0.0247	-	1.14	4675
11	1385.0	754.0	0.0183	-	1.12	5003
12	1114.3	750.0	0.0189	-	1.12	3806
13	1162.6	910.0	0.0082	-	1.14	4466
14	1264.7	1087.0	0.0069	-	1.14	5108
15	1076.6	586.0	0.0095	-	1.12	3045
16	1000.0	516.0	0.0062	-	1.14	4654
17	339.5	167.0	0.0296	-	1.00	6232
18	89.9	57.0	0.0404	-	1.12	7088
19	510.0	250.0	0.0295	-	1.12	7184
20	882.4	470.2	0.0005	0.0275	1.06	3564
21	203.2	158.7	0.0117	0.1519	0.69(TBR)	5031
22	893.3	352.6	0.0008	0.0277	1.06	2680
23	975.3	364.1	0.0008	0.0255	1.07	2863
24	146.6	78.0	0.0012	0.1313	7.63	2236
25	440.3	95.2	0.0013	0.0540	3.11	2044
26	201.0	150.0	0.0300	-	1.09	3254
27	254.4	107.4	0.0046	0.1063	3.52	2480
28	648.8	126.7	0.0034	0.0490	2.74	3639
29	2698.6	1065.6	0.0036	0.0197	1.12	4577
30	446.2	168.5	0.0083	0.0945	2.81	2154
31	2792.4	1362.3	0.0034	0.0244	1.06	9050
32	1839.5	1475.2	0.0049	0.0402	0.99	5127
33	451.1	247.0	0.0100	0.1367	1.82	1192
34	299.1	233.5	0.0126	0.1955	2.27	908
35	220.1	220.6	0.0141	0.2492	2.47	774
36	106.9	135.1	0.0195	0.4418	4.09	621
TBR - T	o Be Reviewee	4				

* Sub-km bands averaged over even/odd samples to 1-km effective size

From Barnes et al 1998 IEEE Geo and Rem Sens Vol 36 No 4

VIIRS	meas SNR	MODIS	meas SNR	wavelength (um)
	(1:1 agg)			
M1	723	8	933	0.415
M2	576	9	1325	0.443
M3	658	10	1308	0.490
M4	558	12	1114	0.565
M5	360	14	1265	0.681
M6	394	15	1077	0.750
M7	545	16	1000	0.865
M8	349	5	78	1.24
M9	247	26	201	1.38
M10	695	6	324	1.61
M11	18	7	72	2.13
M12	0.12 C	20	0.03 C	3.75
M13	0.04 C	23	0.03 C	4.05
M14	0.04 C	29	0.02 C	8.55
M15	0.03 C	31	0.02 C	11.0
M16	0.04 C	32	0.04 C	12.0
11	265 (370 m)	1	168 (250 m)	0.64
12	299 (370 m)	2	413 (250 m)	0.86
13	165 (370 m)	6	324 (500 m)	1.61
14	0.4 C (370 m)	20	0.03 C (1 km)	3.75
15	0.4 C (370 m)	31	0.02 C (1 km)	11.5

Spectral Bias Adjustment Factor

$$\overline{\rho}_{\lambda(A)} = \frac{\int \rho_{\lambda} RSR_{\lambda} d\lambda}{\int RSR_{\lambda} d\lambda}$$

$$SBAF = \frac{\overline{\rho}_{\lambda(A)}}{\overline{\rho}_{\lambda(B)}} = \frac{\left(\int \rho_{\lambda} RSR_{\lambda(A)} d\lambda\right) / \left(\int RSR_{\lambda(A)} d\lambda\right)}{\left(\int \rho_{\lambda} RSR_{\lambda(B)} d\lambda\right) / \left(\int RSR_{\lambda(B)} d\lambda\right)}$$

$$\overline{\rho}^{*}_{\lambda(A)} = \overline{\rho}_{\lambda(A)} / SBAF$$

Where

RSR , = Relative Spectral Response of the sensor [unitless]

 ρ_{2} = Hyperspectral TOA reflectance profile [unitless]

 $\overline{\rho}_{\lambda(A)}$ = Simulated TOA reflectance for sensor A [unitless]

 $\overline{\rho}_{\lambda(B)}$ = Simulated TOA reflectance for sensor B [unitless]

 $\vec{\rho}^*_{\lambda(A)}$ = Compensated TOA reflectance for sensor A using the SBAF to match sensor B TOA [unitless]

		DNB	M1	M2	M3	M4	1	M5	M6	M7	12	M8	M9	M10	13	M11	M12	14	M13	M14	M15	15	M16
	Wavelength (um)	0.7	0.412	0.445	0.488	0.555	0.64	0.672	0.746	0.865	0.865	1.24	1.378	1.61	1.61	2.25	3.7	3.74	4.05	8.55	10.76	11.45	12.01
1	Imagery	х	х		х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
2	Sea Surface Temp																х				х		х
3	Soil Moisture		Uses V	CM, V	IIRS LS	T and s	several	CMIS p	roducts	s, but n	o SDRs												
4	Cloud Base Height							х				х		х			х		х	х	х		х
5	Cloud cover/Layers							х				х		х			х		х	х	х		х
6	Cloud Optical Part Size							х				х		х			х			х	х		х
7	Cloud Thickness							х				х		х			х			х	х		х
8	Cloud Top Height							х				х		х			х		х	х	х		х
9	Cloud Top Pressure							х				х		х			х		х	х	х		х
10	Cloud Top Temp							х				х		х			х		х	х	х		х
11	Land Surface Temp.																х		х		х		х
12	Active Fires							х		х						х			х		х		х
13	Vegetation Index				х		х				х												
14	Snow Cover (Binary)						х				х				х						x	х	X
15	Snow Cover (Fraction)		X		x	X				X		x		X		X							
16	Surface Type		х	х	х	х	х	х		х	х	х		х		х	х		х	х	х		х
17	Surface Albedo		х	х	х	х		х		х		х		х		х							
18	Ice Surface Temp.																				х		х
19	Net Heat Flux		Uses	VCM a	nd othe	r VIIRS	EDRs,	but no	SDRs														
20	Surface Temperature (IP)																				х	х	х
21	Ocean Color / Chloro		х	х	х	х		х	х	х													
22	Sea Ice Age						х				х										х	х	х
23	Aer Opt Thick (Ocean)					X		х	х	х		х	X	х		х	X				x		
24	Aer Opt Thick (Land)		Х	х	х	X		х					X			Х	X				X		
25	Aer Part Size (Ocean)	U	ses AC	DT, but	no SDF	ls																	
26	Aer Part Size (Land)	U	ses AC	DT, but	no SDF	ls																	
27	Suspended Matter																			Х	х		х
28	Total Prec Water																х		х	х	х		х
29	Cloud Mask (IP)		х				х	х		х	х		х	х		х	х	х	х	х	х	х	х
30	Ice Location/Conc. (IP)		Imager	y Appli	ication i	s not re	х				х										х	х	х
31	Sfc Reflectance (IP)		Х	х	х	Х	х	х		Х	Х	х		Х	Х	Х							

Dual Gain Bands: M1-M5, M7, M13

VIS NIR SWIR MWIR LWIR

x Denotes bands that are **Not** primary inputs into algorithm. Used as internal check for algorithm.

Better than 1.3 km Horizontal Sample Interval (HSI) Well Past 1700km

FIG. 2. VIIRS cross-track variation in pixel size as a function of scan angle away from nadir. Both resolutions will be used in the construction of true color.

FIG. 4. Comparison of 1-km (nadir) resolution used for 29 of 36 MODIS channels with 0.76-km (nadir) resolution for VIIRS at moderate resolution. Of the 22 VIIRS channels, 17 use the resolution shown here. Five use a higher resolution of 0.38 km (nadir).

Finer Sampling, Spatial Resolution, & Better Sensitivity

VIIRS has a very large cross track and near constant spatial resolution

Figure 3.2.3: Illustration of MODIS data acquisition on the EOS-AM platform (not to scale). The bidirectional reflectance distribution function (BRDF) changes with view and sun geometry. Notice the shadow caused by clouds and canopy. MODIS pixel dimensions, cross-track and along-track, change with scan angles: 0° = 250 x 250 m; 15° - 270 x 260 m; 30° - 350 x 285 m; 45° - 610 x 380 m

SNR@L_{typ} by Aggregation Zone

Singe-gain Bands - samples aggregated on-board (only M6 for ocean bands).

56°

source: MDFCB, 4 Nov 2004

NPP VIIRS True Color Examples

11.24.2011 2028 UTC, Near Nadir

→ VIIRS maintains similar spatial resolution quality at edge of 3000 km swath

NPP VIIRS True Color Examples

Quality of Subsectors

MODIS

VIIRS

First Global VIIRS Image

VIIRS RGB (True Color), 20111122 R : M05 (0.672 μ m); G : M04 (0.555 μ m); B : M02 (0.445 μ m)

Creation date: 2011-11-26 07:19:26 Z

Transitioning from MODIS to VIIRS for remote sensing of ocean, land, and atmosphere

RT in Earth Atmosphere Multispectral Signatures MODIS Heritage Products VIIRS Instrument Description Some Anticipated VIIRS Applications (SST, Ocean Color, Vegetation, Snow, Ice, Clouds, Moisture, Fires, Dust, Low Light Imagery)

W. Paul Menzel, University of Wisconsin- Madison

NOAA's El Niño Page

Sea surface temperature in the equatorial Pacific Ocean (above). El Niño is characterized by unusually warm temperatures and La Niña by unusually cool temperatures in the equatorial Pacific. Anomalies (below) represent deviations from normal temperature values, with unusually warm temperatures shown in red and unusually cold anomalies shown in blue.

NOAA/NESDIS SST Anomaly (degrees C), 10/24/2011

VIIRS will provide improved SST

Monitoring Biosphere

Cloud/Snow Discrimination

- Complex snow/cloud scenes during winter in Southwest Asia
- Difficult to distinguish clouds from snow in single visible and window-infrared channels
- The ability to determine the presence of cloud over a snow field is useful to targeting, surveillance, navigation, etc.

TC Funso- VIIRS

VIIRS Snow Cover EDR

 EDR description: Snow Cover/Depth is defined to be the horizontal and vertical extent of snow cover. In addition, a binary product will give a snow/no-snow flag. While the original EDR definition included snow depth, the current specification is for snow cover only.

Current Retrieval Strategy:

- Algorithm Heritage: MODIS MOD10 L2 "SnowMap" algorithm (NASA) based on the Normalized Difference Snow Index (NDSI).
- A threshold-based decision-tree algorithm is employed to separate snow free and snow covered pixels. An external cloud mask is used to exclude cloudy pixels from the classification process.
- A snow cover binary map produced at the VIIRS imagery resolution. Snow cover fraction is calculated by 2X2 aggregation of the binary snow cover map is produced at VIIRS moderate resolution.
- **Product Status and Expected Updates**: The Binary Snow Map product should meet its target requirement of 90% probability of correct classification.

VIIRS Ice Characterization EDR

- **EDR description:** An ice age classification for the categories: Ice -free, New/Young Ice (less than 30 cm thickness), and All Other ice. Freshwater ice is not included.
- Current Retrieval Strategy:
 - An energy budget approach is used to estimate sea ice ice thickness.
 - Daytime and nighttime algorithms use different approaches.
 - While the algorithm generates age categories, it actually uses temperature, reflectance and estimated thickness as proxies for age (i.e., age is not calculated directly).
 - Ice concentration is a intermediate product (IP) in the ice characterization EDR.
- **Product Status and Expected Updates**: The uncertainty of the product is highest for nighttime retrievals. An alternative model is being investigated.

Examples of ice thickness (left) and ice age (right) over the Arctic.
VIIRS Ice Surface Temperature EDR

The surface temperature over part of the Antarctic ice sheet and surrounding sea ice derived from MODIS data with a VIIRS-like algorithm.

- **Description:** The surface (skin, or radiating) temperature over snow and ice.
- Retrieval Strategy:
 - The algorithm incorporates an empirical correction for water vapor absorption.
 - It is a split-window approach similar to that used for sea surface temperature (SST).
- Current Challenges: Based on the performance of its heritage AVHRR and MODIS algorithms, the IST EDR should meet its accuracy specification for the two-channel method, although additional tuning would be beneficial.

Aircraft Contrails

SUOMI NPP VIIRS - IR 11.540 MICROMETERS (BAND IS)

- 07:41 UTC 26 JANUARY 2012 - CIMSS / SSEC / UNIVERSITY OF WISCONSIN - MADISON

Fire Detection

Dust Storms

DayNight Band (DNB)

- Purpose: Replicate OLS capability but with updated technology and improvements
- 0.5 -- 0.9 µm broadband visible
- Detectors are aggregated to produce nearconstant resolution
- More detectors aggregated near nadir for high SNR; fewer aggregated near edge for lower SNR

DNB "Constant Contrast"

Three Gains	Relative Gain
High	119,000
Medium	477
Low	1

- Improves SNR at low radiances
- All pixels are imaged with all three gains
- Onboard processing selects the most sensitive gain setting without saturation for transmission to the ground
- Goal is "constant contrast" imagery

VIIRS Improvement for DNB

DMSP OLS

- 1. 64 Gray shades
- 2. 2.2 km Field of View
- 3. Limited Pixel Expansion
- 4. Numerous Image Artifacts

NPOESS VIIRS

64 X = 4096 Gray shades

0.75 km Field of View

No Pixel Expansion

Artifacts Eliminated

Full Moon

Lights over Korea

Data Center. DMSP data collected by US Air Force Weather Agency

NPP VIIRS DNB Example

Low Clouds & Fog Over Cold Terrain

Detection enabled where conventional IR techniques often fail due to extremely cold surfaces...

Ship Tracks

GOES VIS loop Courtesy CIMSS

Day/Night Band's sensitivity to reflected moonlight will improve the detection of ship tracks and other low-cloud features at night...

Tropical Cyclone LLC Center

- Exposed low-level circulation occurs when storms enter a high vertical shear environment
- Decoupling of the upper and lower level cloud fields
- Displacements between upper and lower level centers can exceed 100 km in some cases

Helps avoid the "Sunrise Surprise"

Cloud Overlap Detection

Limited information on cloud layering is available from multi-spectral VIS/IR measurements: thin cirrus atop thick lower-level clouds

The VIIRS DNB will offer the only capability for detecting such two-layer cloud structures at night.

Snow Cover Detection

Multi-spectral techniques that include a nighttime visible band can separate cloud from snow cover and sea-ice.

We can simulate the capability of VIIRS via space/time matching of OLS and sensors possessing NIR channels...

http://www.nrlmry.navy.mil/nexsat-bin/nexsat.cgi

Near-Realtime Polar Products from NexSat

http://www.nrlmry.navy.mil/nexsat_pages/nexsat_home.html

Conclusions

- VIIRS adds advanced capability not available from MODIS
- JPSS will be a forecaster's system
- Constant-Contrast/Constant-Resolution Data will produce vivid, information-rich images for DNB
- Preservation of footprint size will facilitate more usable images
- VIIRS fine channels replicate the capability of AVHRR
- Many products will complement EDRs

NPP is launched successfully 28 Oct 2011

ATMS

Advanced Technology Microwave Sounder Northrop Grumman Electronic Systems

Description

- <u>Purpose</u>: In conjunction with CrIS, global observations of temperature and moisture profiles at high temporal resolution (~ daily).
- <u>Predecessor Instruments:</u> AMSU A1 / A2, MHS
- <u>Approach:</u> Scanning passive microwave radiometer
- 22 channels (23GHz - 183GHz)
- <u>Swath width:</u> 2600 km
- <u>Co-registration</u>: with CrIS

ATMS Design Challenge

First global ATMS image showing the channel 18microwave antenna temperature at 183.3 GHz on November 8, 2011

The ATMS data were processed at the NOAA Satellite Operations Facility (NSOF) in Suitland, MD and the image was generated by STAR

Quality of the image is superb, no indication of instrument artifacts, and by design no orbital gaps

This channel measures atmospheric water vapor; note that Tropical Storm Sean is visible in the data, as the blue patch due to heavy precipitation, in the Atlantic off the coast of the Southeastern United States. ATMS provides critical water vapor information for weather forecasting and storm intensity assessments ATMS Preliminary Assessment Total Precipitable Water

ATMS Preliminary Assessment (Rainfall Rate)

MiRS/ATMS MiRS/N19 AMSU-MHS MIRS NPP/ATMS Rain Rate (mm/hr) 2011-11-11 Asc (V2774) MIRS N19 Rain Rate (mm/hr) 2011-11-11 Asc (V2741) 90 45 30 1.5 -15-30-45-60 -75-90 120 -180-150 -120-90 -60 -30 0 30 60 90 120 150 180 3.40 NoData OC fail -1.001.20 5.60 7.80 10.00 1.20 3.40 5.60 7.80

MiRS ATMS Rainfall rate (left) and MiRS N19 Rainfall rate (right) screened out over snow cover and sea-ice.

10.00

NoData

OC fail

-1.00

NoReport

ATMS Preliminary Assessment

(Temperature Soundings Using ECMWF as a reference)

MiRS ATMS 500 mb T

ECMWF 500 mb T

CrIS

Cross-Track Infrared Sounder (CrIS)

NPOESS Preparatory Satellite – Launch: October 2011

- NPP/JPSS Michelson Interferometer: 0.625,1.25, 2.5cm⁻¹ (resolving power of 1000)
 - Spectral range: 660-2600 cm⁻¹
 - 3 x 3 HdCdTe focal plane passively cooled (4-stages) to 85K
 - Focal plane 27 detectors, 1305 spectral channels
 - 310 K Blackbody and space view provides radiometric calibration
 - NEDT ranges from 0.05 K to 0.5 K

AIRS Atmospheric InfraRed Sounder Grating spectrometer 166 kg, 256 W 13.5 km FOV at nadir, contiguous Launched on Aqua in 2002

Infrared Atmospheric Sounding Interferometer Michelson interferometer 236 kg, 210 W 2x2 12 km FOVs at nadir, non-contiguous Launched on Metop-A in 2006

CrIS

Cross-track Infrared Sounder Michelson interferometer 146 kg, 110 W 3x3 14 km FOVs at nadir, contiguous To be launched on NPP

Spectral Coverage and Example Observations of AIRS, IASI, and CrIS

900 cm-1 map 20 Jan 2012

